Respuesta :
Answer:
(b)E(x)=1.3087
(c)Variance of x =1.7119
(d)E(y)=2.0447
Step-by-step explanation:
Random variable x = number of cups of coffee consumed on an average day.
Total Respondents = 1014
(a)Probability distribution for x.
[tex]\left|\begin{array}{c|cccccc}x&0&1&2&3&4\\\\P(x)&\dfrac{365}{1014}&\dfrac{264}{1014}&\dfrac{193}{1014}&\dfrac{91}{1014}&\dfrac{101}{1014} \end{array}\right|[/tex]
(b)Expected Value of x
[tex]E(x)=\left(0\times\dfrac{365}{1014}\left)+\left(1\times\dfrac{264}{1014}\left)+\left(2\times\dfrac{193}{1014}\left)+\left(3\times\dfrac{91}{1014}\left)+\left(4\times\dfrac{101}{1014}\right)[/tex]
E(x)=1.3087
(c)Variance of x
Variance [tex]=\sum (x-\mu)^2P(x)[/tex]
[tex]\left|\begin{array}{c|cccccc}x&0&1&2&3&4\\(x-\mu)^2&1.7167&0.0953&0.4779&2.8605&7.2431\\\\P(x)&\dfrac{365}{1014}&\dfrac{264}{1014}&\dfrac{193}{1014}&\dfrac{91}{1014}&\dfrac{101}{1014} \\\\(x-\mu)^2P(x)&0.6179&0.0248&0.0910&0.2567&0.7215\end{array}\right|[/tex]
[tex]Variance, \sum (x-\mu)^2P(x)=1.7119[/tex]
(d)
[tex]\left|\begin{array}{c|cccccc}y&1&2&3&4\\\\P(y)&\dfrac{264}{649}&\dfrac{193}{649}&\dfrac{91}{649}&\dfrac{101}{649} \end{array}\right|[/tex]
[tex]E(y)=\left(1\times\dfrac{264}{649}\left)+\left(2\times\dfrac{193}{649}\left)+\left(3\times\dfrac{91}{649}\left)+\left(4\times\dfrac{101}{649}\right)[/tex]
E(y)=2.0447
The expected vale of y is greater than the expected value of x.
Using the expected value and variance relation, the solutions to the problems posed are given thus :
1.)
Creating a probability distribution function :
X : ____ 0 _____ 1 _____ 2 _____ 3 _____ 4
P(X) _[tex] \frac{365}{1014}[/tex] __ [tex] \frac{264}{1014}[/tex] __ [tex] \frac{193}{1014}[/tex] __ [tex] \frac{91}{1014}[/tex] __ [tex] \frac{101}{1014}[/tex]
2.)
The Expected value E(X) can be defined thus :
- E(X) = ΣX × P(X)
E(X) = [tex] \frac{365}{1014} \times 0 + \frac{264}{1014} \times 1 + \frac{193}{1014} \times 2 + \frac{91}{1014} \times 3 + \frac{101}{1014} \times 4 = 1.309 [/tex]
2.)
The Expected Variance Formula :
- Var(X) = ΣX² × P(X) - E(X)²
Var(X) = [tex] [\frac{365}{1014} \times 0^{2} + \frac{264}{1014} \times 1^{2} + \frac{193}{1014} \times 2^{2} + \frac{91}{1014} \times 3^{2} + \frac{101}{1014} \times 4^{2}] - 1.309^{2} = [/tex]
Var(X) = [tex]3.423 - 1.7126 = 1.710[/tex]
D.)
Expected value of y :
- Number of cups of coffee consumed is atleast 1 = 1, 2, 3, 4 or more
- n = 1014 - 365 = 649
E(X) = [tex] \frac{264}{649} \times 1 + \frac{193}{649} \times 2 + \frac{91}{649} \times 3 + \frac{101}{649} \times 4 = 2.045 [/tex]
Hence, the expected value of y is greater than of x.
Learn more : https://brainly.com/question/16314496