Answer:
Option B
Step-by-step explanation:
A unit circle means radius of the circle = 1 unit
Let a terminal point on the circle is (x, y) and angle between the point P and x-axis is θ.
Center of the circle is origin (0, 0).
Therefore, ordered pair representing the terminal point will be (OP×Cosθ, OP×Sinθ) = [tex](\frac{\sqrt{2} }{2},-\frac{\sqrt{2} }{2})[/tex]
OP.Cosθ = 1×Cosθ = [tex]\frac{1}{\sqrt{2}}[/tex]
Cosθ = [tex]\frac{1}{\sqrt{2}}[/tex]
θ = [tex]\frac{\pi }{4}+2\pi n[/tex], [tex]\frac{7\pi }{4}+2\pi n[/tex] where n = integers
Similarly, OP×Sinθ = 1×Sinθ = -[tex]\frac{1}{\sqrt{2}}[/tex]
Sinθ = -[tex]\frac{1}{\sqrt{2} }[/tex]
θ = [tex]\frac{5\pi }{4}+2\pi n[/tex], [tex]\frac{7\pi }{4}+2\pi n[/tex] where n = integer
Common value of θ will be, θ = [tex]\frac{7\pi }{4}[/tex]
Option B will be the answer.