Respuesta :

Answer:

Option B

Step-by-step explanation:

A unit circle means radius of the circle = 1 unit

Let a terminal point on the circle is (x, y) and angle between the point P and x-axis is θ.

Center of the circle is origin (0, 0).

Therefore, ordered pair representing the terminal point will be (OP×Cosθ, OP×Sinθ) = [tex](\frac{\sqrt{2} }{2},-\frac{\sqrt{2} }{2})[/tex]

OP.Cosθ = 1×Cosθ = [tex]\frac{1}{\sqrt{2}}[/tex]

Cosθ = [tex]\frac{1}{\sqrt{2}}[/tex]

θ = [tex]\frac{\pi }{4}+2\pi n[/tex],  [tex]\frac{7\pi }{4}+2\pi n[/tex] where n = integers

Similarly, OP×Sinθ = 1×Sinθ = -[tex]\frac{1}{\sqrt{2}}[/tex]

Sinθ = -[tex]\frac{1}{\sqrt{2} }[/tex]

θ = [tex]\frac{5\pi }{4}+2\pi n[/tex],  [tex]\frac{7\pi }{4}+2\pi n[/tex] where n = integer

Common value of θ will be, θ = [tex]\frac{7\pi }{4}[/tex]

Option B will be the answer.

Ver imagen eudora