Given the vector (4|3) and the transformation matrix (0|1|-1|0), which vector is the imagine after applying the transformation to (4|3)? A. (4|-3)

B.(-3|4)

C.(3|-4)

D.(-4|3)

Respuesta :

Answer:

C.(3|-4)

Step-by-step explanation:

Given the vector:

[tex]\left[\begin{array}{ccc}4\\3\end{array}\right][/tex]

The transformation Matrix is:

[tex]\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right][/tex]

The image of the vector after applying the transformation will be:

[tex]\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]\left[\begin{array}{ccc}4\\3\end{array}\right]\\\\=\left[\begin{array}{ccc}0*4+1*3\\-1*4+0*3\end{array}\right]\\\\=\left[\begin{array}{ccc}3\\-4\end{array}\right][/tex]

The correct option is C

The image after applying the transformation to the matrix is [tex]\begin{bmatrix}3\\ -4\end{bmatrix}[/tex].

What is a matrix ?

Matrix, a set of numbers arranged in rows and columns so as to form a rectangular array. The numbers are called the elements, or entries, of the matrix.

It is given that the vector is

[tex]\begin{bmatrix}4\\ 3\end{bmatrix}[/tex]

and the transformation matrix is

[tex]\begin{bmatrix}0 &1 \\ -1 &0 \end{bmatrix}[/tex]

The image after applying the transformation

[tex]\begin{bmatrix}4\\ 3\end{bmatrix}\begin{bmatrix}0 &1 \\ -1 &0 \end{bmatrix}[/tex]

[tex]\begin{bmatrix}0*4+0*3 \\-1*4+0*3 \end{bmatrix}[/tex]

[tex]\begin{bmatrix}3\\ -4\end{bmatrix}[/tex]

Therefore the image after applying the transformation to the matrix is [tex]\begin{bmatrix}3\\ -4\end{bmatrix}[/tex].

To know more about Matrix

https://brainly.com/question/9967572

#SPJ5