Assume that you plan to use a significance level of α = 0.05 to test the claim that p1 = p2. Use the given sample sizes and numbers of successes to find the pooled estimate. Round your answer to the nearest thousandth.
n1 = 677 n2 = 3377
x1 = 172 x2 = 654

Respuesta :

Answer:

The calculated  value Z = 3.775 > 1.96 at 0.05 level of significance

Null hypothesis is rejected

The Two Population proportion are not equal

Step-by-step explanation:

Given first sample size n₁ = 677

First sample proportion

                             [tex]p^{-} _{1} = \frac{x_{1} }{n_{1} } = \frac{172}{677} = 0.254[/tex]

Given second sample size n₂ = 3377

second sample proportion

                             [tex]p^{-} _{2} = \frac{x_{2} }{n_{2} } = \frac{654}{3377} = 0.1936[/tex]

Null Hypothesis : H₀ :  p₁ = p₂.

Alternative Hypothesis : H₁ :  p₁ ≠ p₂.

      Test statistic

                [tex]Z = \frac{p_{1} ^{-}-p^{-} _{2} }{\sqrt{P Q(\frac{1}{n_{1} } +\frac{1}{n_{2} }) } }[/tex]

where

        [tex]P = \frac{n_{1} p_{1} + n_{2} p_{2} }{n_{1}+n_{2} } = \frac{677 X 0.254+3377 X 0.1936}{677+3377}[/tex]

       P =  0.2036

      Q = 1 - P = 1 - 0.2036 = 0.7964

       

         [tex]Z = \frac{0.254- 0.1936 }{\sqrt{0.2036 X 0.7964(\frac{1}{677 } +\frac{1}{3377 }) } }[/tex]

        Z =  3.775

Critical value ∝=0.05

Z- value = 1.96

The calculated  value Z = 3.775 > 1.96 at 0.05 level of significance

Null hypothesis is rejected

The Two Population proportion are not equal