Using the Central Limit Theorem, it is found that the measures are given by:
a) 2,500,000.
b) 88,388.35.
c) 2,500,000.
By the Central Limit Theorem, the sampling distribution of sample means of size n for a population of mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] has the same mean as the population, but with standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
Hence, we have that for options a and c, the mean is of 2,500,000 users, while for option b, the standard deviation is given by:
[tex]s = \frac{\sigma}{\sqrt{n}} = \frac{625000}{\sqrt{50}} = 88,388.35.[/tex]
More can be learned about the Central Limit Theorem at https://brainly.com/question/24663213