Respuesta :

Answer:

[tex](1-cos^2 x ).(1+tan^2 x) = tan^2x[/tex]

Step-by-step explanation:

Given

[tex](1-cos^2 x ).(1+tan^2 x)[/tex]

Required

Solve

[tex](1-cos^2 x ).(1+tan^2 x)[/tex]

In trigonometry;

[tex]1 - cos^2x = sin^2x[/tex]

So, make substitution

[tex](1-cos^2 x ).(1+tan^2 x)[/tex] becomes

[tex](1-cos^2 x ).(1+tan^2 x) = (sin^2 x ).(1+tan^2 x)[/tex]

Also; in trigonometry:

[tex]1 + tan^2x = sec^2x[/tex]

Make another substitution

[tex](1-cos^2 x ).(1+tan^2 x) = (sin^2 x ).(sec^2 x)[/tex]

Recall that [tex]secx = \frac{1}{cosx}[/tex]

So;

[tex](1-cos^2 x ).(1+tan^2 x) = (sin^2 x ).(sec^2 x)[/tex] becomes

[tex](1-cos^2 x ).(1+tan^2 x) = (sin^2 x ).(\frac{1}{cos^2 x})[/tex]

[tex](1-cos^2 x ).(1+tan^2 x) = \frac{sin^2 x }{cos^2 x}[/tex]

[tex](1-cos^2 x ).(1+tan^2 x) = (\frac{sin x }{cosx})^2[/tex]

In trigonometry;

[tex]tan x = \frac{sin x}{cos x}[/tex]

[tex](1-cos^2 x ).(1+tan^2 x) = tan^2x[/tex]

The expression cannot be further simplified