Hence, the force of gravitation between Earth and Jupiter is 8.16 * 10 N
Enample 5: An apple with the mass of 200 g falls from a tree. What is the acceleration
of the apple towards the earth? What is the acceleration of the earth towards the apple?
(Given: mass of the earth = 6*10kg radius of the earth 6.4 10 m, G=6.67 * 10 " Nm
kg and neglecting height of the tree).​

Respuesta :

Answer:

Acceleration of the apple towards the earth is: 9.7705 m/s2.

Acceleration produced on earth towards the apple

[tex]0.325*10^{-24} \ \ m/s2.[/tex]

Explanation:

Given :

[tex]m = 200 g[/tex]

We have to convert into the kg ,

so

[tex]m=0.2 kg[/tex]

M=[tex]6*10^{24}[/tex] kg

[tex]R=6.4*10^{6} m[/tex]

[tex]G= 6.67*10^{-11} \ Nm^{2} kg-2[/tex]

As the gravitational force is existing among the earth and the apple

so

[tex]F=\frac{GMm}{R^{2} }[/tex]

Putting the value of G,M,m and [tex]R^{2}[/tex], we get

[tex]\frac{6.67*10^{-11} *6*10^{24} *0.2 }{(6.4*10^{6} )^{2} } \\\\F= 1.9541\ N[/tex]

Consider a1 and a2 be a acceleration due to the gravitational force of earth attraction created on the apples

F= a1 *m

[tex]a1\ =\ \frac{F}{m}[/tex]

a1=[tex]\frac{1.9541}{0.2}[/tex]

[tex]a1=9.7705 \ m/s2[/tex]

Acceleration of the apple towards the earth is: 9.7705 m/s2.

again

[tex]F= a2 *M[/tex]

a2=[tex]\frac{F}{M}[/tex]

[tex]a2=\frac{ 1.9541}{6**10^{24} } \\a2=0.325* 10^{-24}\ m/s2[/tex]

So, Acceleration produced on earth towards the apple

[tex]0.325*10^{-24} \ \ m/s2.[/tex]