Answer:
a. 0.0668
b. 0.9545
Step-by-step explanation:
We have the following information:
mean (m) = 10000
standard deviation (sd) = 100
(a)
We must calculate the proportion of the components exceed 10150 kilograms per square centimeter in tensile strength as follows:
P (x> 10150) = P [(x - m) / sd> (10150 - 1000 /) 100]
P (x> 10150) = P (z> 1.5)
P (x> 10150) = 1 - P (z <1.5)
P (x> 10150) = 1 - 0.9332 (attached table)
P (x> 10150) = 0.0668
Therefore the proportion of the components exceed 10150 kilograms per square centimeter in tensile strength is 0.0668
(b)
We must calculate the proportion of all components has tensile strength between 9800 and 10200, as follows:
P (9800 <x <10200) = P [(9800 - 1000 /) 100 <(x - m) / sd <(10200 - 1000 /) 100]
P (9800 <x <10200) = P (-2 <z <2)
P (9800 <x <10200) = P (z <2) - P (z <-2)
P (9800 <x <10200) = 0.9773 - 0.0228 (attached table)
P (9800 <x <10200) = 0.9545
the proportion of pieces that would expect to scrap is 0.9545