the pressure p of a given gas in inversely proportional to the cube root of its volume, V at a constant temperature, When V is 64, p=6 . calculate (a) p when v=27 (d) v when f= 2​

Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given that p is inversely proportional to [tex]\sqrt[3]{V}[/tex] then the equation relating them is

p = [tex]\frac{k}{\sqrt[3]{V} }[/tex] ← k is the constant of proportion

To find k use the condition when V = 64, p = 6 , thus

6 = [tex]\frac{k}{\sqrt[3]{64} }[/tex] = [tex]\frac{k}{4}[/tex] ( multiply both sides by 4 )

24 = k

p = [tex]\frac{24}{\sqrt[3]{V} }[/tex] ← equation of proportion

(a)

When V = 27, then

p = [tex]\frac{24}{\sqrt[3]{27} }[/tex] = [tex]\frac{24}{3}[/tex] = 8

(b)

When p = 2, then

2 = [tex]\frac{24}{\sqrt[3]{V} }[/tex] ( multiply both sides by [tex]\sqrt[3]{V}[/tex] )

2[tex]\sqrt[3]{V}[/tex] = 24 ( divide both sides by 2 )

[tex]\sqrt[3]{V}[/tex] = 12 ( cube both sides )

V = 12³ = 1728