Assume that a sample is used to estimate a population proportion p. Find the 98% confidence interval for a
sample of size 131 with 81% successes. Enter your answer as a tri-linear inequality using decimals (not
percents) accurate to three decimal places.
apa
> Next Question

Respuesta :

Answer:

[tex]0.81 - 2.326 \sqrt{\frac{0.81(1-0.81)}{131}}=0.730[/tex]

[tex]0.81 + 2.326 \sqrt{\frac{0.81(1-0.81)}{131}}=0.890[/tex]

And the confidence interval would be:

[tex] 0.730 \leq \p \leq 0.890[/tex]

Step-by-step explanation:

Information given:

[tex] n=131[/tex] represent the sample size

[tex] \hat p=0.81[/tex] represent the estimated proportion

The confidence interval would be given by this formula

[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

For the 98% confidence interval the value of [tex]\alpha=1-0.98=0.02[/tex] and [tex]\alpha/2=0.01[/tex], with that value we can find the quantile required for the interval in the normal standard distribution.

[tex]z_{\alpha/2}=2.326[/tex]

And replacing into the confidence interval formula we got:

[tex]0.81 - 2.326 \sqrt{\frac{0.81(1-0.81)}{131}}=0.730[/tex]

[tex]0.81 + 2.326 \sqrt{\frac{0.81(1-0.81)}{131}}=0.890[/tex]

And the confidence interval would be:

[tex] 0.730 \leq \p \leq 0.890[/tex]