Answer:
The probability of exactly '4' success
P( X=4) = 0.2508
Step-by-step explanation:
Step(i):-
Given sample size 'n' = 10
Given probability of success 'p' = 0.4
q = 1 -p = 1 - 0.4 = 0.6
Step(ii):-
Let 'X' be the successes in binomial distribution
[tex]P( x = r) = n_{C_{r} } p^{r} q^{n-r}[/tex]
The probability of exactly '4' success
[tex]P( x = 4) = 10_{C_{4} } (0.4)^{4} (0.6)^{10-4}[/tex]
we will use factorial notation
[tex]10C_{4} = \frac{10!}{(10-4)!4!} = \frac{10 X 9 X 8 X 7 X6!}{6! 4!} = \frac{10 X 9 X8 X7}{4X 3X 2X1} = 210[/tex]
[tex]P( x = 4) = 210 X 0.0256 X0.0466[/tex]
P( X=4) = 0.2508
conclusion:-
The probability of exactly '4' success
P( X=4) = 0.2508