The impeller shaft of a fluid agitator transmits 28 kW at 440 rpm. If the allowable shear stress in the impeller shaft must be limited to 80 MPa, determine(a) the minimum diameter required for a solid impeller shaft.(b) the maximum inside diameter permitted for a hollow impeller shaft if the outside diameter is 40 mm.(c) the percent savings in weight realized if the hollow shaft is used instead of the solid shaft. (Hint: The weight of a shaft is proportional to its cross-sectional area.)

Respuesta :

Answer:

a) 34 mm

b) 39 mm

c) 93.16%

Explanation:

power transmitted P = 28 kW 28000 W

angular speed N = 440 rpm

angular speed in rad/s Ω = 2[tex]\pi[/tex]N/60

Ω = (2 x 3.142 x 440)/60 = 46.08 rad/s

allowable shear stress τ = 80 MPa = 80 x [tex]10^{6}[/tex] Pa

torque T = P/Ω = 28000/46.08 = 607.64 N-m

a)  for the minimum diameter of a solid shaft, we use the equation

τ[tex]d^{3}[/tex]= [tex]\frac{16T}{ \pi}[/tex]

80 x [tex]10^{6}[/tex] x [tex]d^{3}[/tex] =  [tex]\frac{16*607.64}{3.142}[/tex] = 3094.28

[tex]d^{3}[/tex] = 3094.28/(80 x [tex]10^{6}[/tex]) = 0.0000386785

d = [tex]\sqrt[3]{0.0000386785}[/tex] ≅ 0.034 m = 34 mm

b) For a hollow shaft with outside diameter D = 40 mm = 0.04 m

we use the equation,

T = [tex]\frac{16}{\pi }[/tex] x τ x [tex]\frac{D^{4} - d^{4}}{D^{4} }[/tex]

where d is the internal diameter of the pipe

607.64 =  [tex]\frac{16}{3.142}[/tex] x 80 x [tex]10^{6}[/tex] x  [tex]\frac{0.04^{4} - d^{4}}{0.04^{4} }[/tex]

3.82 x [tex]10^{-12}[/tex] = [tex]0.04^{4} - d^{4}[/tex]

[tex]d^{4}[/tex] = [tex]\sqrt[4]{2.56*10^{-6} }[/tex]

d = 0.039 m = 39 mm

c) we assume weight is proportional to cross-sectional area

for solid shaft,

area = [tex]\pi r^{2}[/tex]

r = diameter/2 = 34/2 = 17 mm

area = 3.142 x [tex]17^{2}[/tex] = 907.92 mm^2

for hollow shaft, radius is also gotten as before

external area =  [tex]\pi r^{2}[/tex] = 3.142 x [tex]20^{2}[/tex] = 1256.64 mm^2

internal diameter =  [tex]\pi r^{2}[/tex]  = 3.142 x [tex]19.5^{2}[/tex] = 1194.59 mm^2

true area of hollow shaft = external area minus internal area

area = 1256.64 - 1194.59 = 62.05 mm^2

material weight saved is proportional to 907.92 - 62.05 = 845.87 mm^2

percentage weight saved is proportional to  845.87/907.92 x 100%

= 93.15%