Respuesta :
Answer:
[tex]g(x) = \frac{1}{5} |x|[/tex]
Step-by-step explanation:
Given
[tex]f(x) = |x|[/tex]
Vertically compressed
Compression Factor = 5
Required
Find the equation of the new function;
Let the new function be represented by g(x)
Let c represented the compression factor;
such that c = 5
When a function f(x) is vertically compressed by factor c, the new function becomes
[tex]f(\frac{1}{c}x)[/tex]
From properties of functions;
[tex]f(\frac{1}{c}x) = \frac{1}{c} *f(x)[/tex]
This implies that
[tex]g(x) = f(\frac{1}{c}x) = \frac{1}{c} *f(x)[/tex]
[tex]g(x) = \frac{1}{c} *f(x)[/tex]
Recall that [tex]f(x) = |x|[/tex] and c = 5
[tex]g(x) = \frac{1}{5} * |x|[/tex]
[tex]g(x) = \frac{1}{5} |x|[/tex]
Hence, the new function is [tex]g(x) = \frac{1}{5} |x|[/tex]