Ceysav
contestada

If you vertically compress the absolute value parent function, f(x) = [ 41, by a
factor of 5, what is the equation of the new function?
A. g(x) = 1/5 |x|
B. g(x) = |x - 5|
C. g(x) = |5x|
D. g(x) = 5|x|

Respuesta :

Answer:

[tex]g(x) = \frac{1}{5} |x|[/tex]

Step-by-step explanation:

Given

[tex]f(x) = |x|[/tex]

Vertically compressed

Compression Factor = 5

Required

Find the equation of the new function;

Let the new function be represented by g(x)

Let c represented the compression factor;

such that c = 5

When a function f(x) is vertically compressed by factor c, the new function becomes

[tex]f(\frac{1}{c}x)[/tex]

From properties of functions;

[tex]f(\frac{1}{c}x) = \frac{1}{c} *f(x)[/tex]

This implies that

[tex]g(x) = f(\frac{1}{c}x) = \frac{1}{c} *f(x)[/tex]

[tex]g(x) = \frac{1}{c} *f(x)[/tex]

Recall that [tex]f(x) = |x|[/tex] and c = 5

[tex]g(x) = \frac{1}{5} * |x|[/tex]

[tex]g(x) = \frac{1}{5} |x|[/tex]

Hence, the new function is [tex]g(x) = \frac{1}{5} |x|[/tex]

Answer:

G(x)=1/5 |x|

Step-by-step explanation:

A p e x