Answer: mg/Cosθ
Explanation:
Taking horizontal acceleration of wedge as 'a'
FCosΘ = FsinΘ
F = mass(m) × acceleration(a) = ma
For horizontal resolution g = 0
Therefore,
Horizontal = Vertical
maCosΘ = mgSinΘ
aCosΘ = gSinΘ
a = gSinΘ/CosΘ
Recall from trigonometry :
SinΘ/Cosθ = tanΘ
Therefore,
a = gtanΘ
Normal force acing on the wedge:
mgCosΘ + maSinΘ - - - - (y)
Substitute a = gtanΘ into (y)
mgCosΘ + mgtanΘsinΘ
tanΘ = sinΘ/cosΘ
mgCosΘ + mgsinΘ/cosΘsinΘ
mgCosΘ + mgsin^2Θ/cosΘ
Factorizing
mg(Cosθ + sin^2Θ/cosΘ)
Taking the L. C. M
mg[(Cos^2θ + sin^2Θ) /Cosθ]
Recall: Cos^2θ + sin^2Θ = 1
mg[ 1 /Cosθ]
mg/Cosθ