Respuesta :

Answer:

Infinitely many solutions.

Step-by-step explanation:

Given

[tex]3x-2y=12\\ 6x-4y=24[/tex]

Required;

Find the solution

[tex]3x-2y=12 --(1)\\ 6x-4y=24 -- (2)[/tex]

Make x the subject of formula in (1)

[tex]3x-2y=12[/tex]

Add 2y to both sides

[tex]3x-2y+2y=12+2y[/tex]

[tex]3x=12+2y[/tex]

Divide both sides by 3

[tex]\frac{3x}{3}=\frac{12+2y}{3}[/tex]

[tex]x=\frac{12+2y}{3}[/tex]

Substitute [tex]x=\frac{12+2y}{3}[/tex] in (2)

[tex]6x-4y=24[/tex]

[tex]6(\frac{12+2y}{3})-4y=24[/tex]

[tex]2(12+2y)-4y=24[/tex]

Open Bracket

[tex]24+4y-4y=24[/tex]

[tex]24+4y-4y=24[/tex]

Collect Like Terms

[tex]4y-4y=24-24[/tex]

[tex]0 = 0[/tex]

Based on the result above, the two equations have infinitely many solutions.