Respuesta :
Options
[tex]2(vt -d)=at^2[/tex]
[tex]a=\frac{2(d - vt)}{t^2}[/tex]
[tex]2(d-vt) = at^2[/tex]
[tex]vt-d=\frac{1}{2} at^2[/tex]
[tex]d-vt = -\frac{1}{2}at^2[/tex]
[tex]a=\frac{2(vt-d)}{t^2}[/tex]
Answer:
See Explanation below
Step-by-step explanation:
Given
[tex]d = vt - \frac{1}{2}at^2[/tex]
Required
Steps to find a
To solve for a;
The step 1 is :
[tex]d-vt = -\frac{1}{2}at^2[/tex]
This is achieved by adding vt to both sides
The step 2 is:
[tex]vt-d=\frac{1}{2} at^2[/tex]
This is achieved by multiply both sides by -1
The step 3 is:
[tex]2(vt -d)=at^2[/tex]
This is achieved by multiplying both sides by 2
The step 4 is:
[tex]a=\frac{2(vt-d)}{t^2}[/tex]
This is achieved by dividing both sides by t²
Note that, not all steps in the option are used because they are either incorrect or not necessary
Answer:
for edmentum the answer is
Box 1: d-vt=1/2at^2
Box 2: vt-d=1/2at^2
Box 3: 2(vt-d)/t^2
Step-by-step explanation: Almost certain after scrounging Brainly.
Good luck!