a wheel has a constant angular acceleration of 3.0 rad/s2. during a certain 4.0s interval it turns through an angle of 120 rad. assuming that the wheel started from rest, how long has it been in motion at the start of this 4 s interval

Respuesta :

Answer:

8 s

Explanation:

We are given that

Acceleration=[tex]\alpha=3 rad/s^2[/tex]

Time, t=4 s

Angle,[tex]\theta=120 rad[/tex]

Initial angular velocity,[tex]\omega_0=0 rad/s[/tex]

Let [tex]\omega[/tex] be the velocity at the start of this 4 s interval

We know that

[tex]\theta=\omega_0t+\frac{1}{2}\alpha t^2[/tex]

Using the formula

[tex]120=4\omega+\frac{1}{2}(3)(4)^2[/tex]

[tex]120=4\omega+24[/tex]

[tex]120-24=4\omega[/tex]

[tex]4\omega=96[/tex]

[tex]\omega=\frac{96}{4}=24rad/s[/tex]

[tex]t=\frac{\omega-\omega_0}{\alpha}=\frac{24-0}{3}=8 s[/tex]

t=8 s