Answer:
The amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.
Step-by-step explanation:
Let the random variable X represent the amount of money that the family has invested in different real estate properties.
The random variable X follows a Normal distribution with parameters μ = $225,000 and σ = $50,000.
It is provided that the family has invested in n = 10 different real estate properties.
Then the mean and standard deviation of amount of money that the family has invested in these 10 different real estate properties is:
[tex]\mu_{\bar x}=\mu=\$225,000\\\\\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}=\frac{50000}{\sqrt{10}}=15811.39[/tex]
Now the lowest 80% of the amount invested can be represented as follows:
[tex]P(\bar X<\bar x)=0.80\\\\\Rightarrow P(Z<z)=0.80[/tex]
The value of z is 0.84.
*Use a z-table.
Compute the value of the mean amount invested as follows:
[tex]\bar x=\mu_{\bar x}+z\cdot \sigma_{\bar x}[/tex]
[tex]=225000+(0.84\times 15811.39)\\\\=225000+13281.5676\\\\=238281.5676\\\\\approx 238281.57[/tex]
Thus, the amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.