The electric potential of a charge distribution is given by the equation V(x) = 3x2y2 + yz3 - 2z3x, where x, y, z are measured in meters and V is measured in volts. Calculate the magnitude of the electric field vector at the position (x,y,z) = (1.0, 1.0, 1.0)

Respuesta :

Answer:

The magnitude of the electric field is  [tex]|E| = 8.602 \ V/m[/tex]

Explanation:

From the question we are told that

    The electric potential is  [tex]V = 3x^2y^2 + yz^3 - 2z^3x[/tex]

Generally electric filed is mathematically represented as

          [tex]E = - [\frac{dV }{dx} i + \frac{dV}{dy} j + \frac{dV}{dz} \ k][/tex]

So

         [tex]E =- ( [6xy^2 - 2z^3] i + [6x^2y+ z^3]j + [3yz^2 -6xz^2])[/tex]

at (x,y,z) = (1.0, 1.0, 1.0)

        [tex]E = [6(1)(1)^2 - 2(1)^3] i + [6(1)^2(1)+ (1)^3]j + [6(1)(1)^2 -6(1)(1)^2][/tex]

        [tex]E =- ([4] i + [7]j + [-3])[/tex]

       [tex]E =-4i -7j + 3 k[/tex]

The magnitude of the electric field is  

        [tex]|E| = \sqrt{(-4)^2 + (-7)^2 + (3^2)}[/tex]

       [tex]|E| = 8.602 \ V/m[/tex]