Respuesta :

Answer:

16[tex]x^{6}[/tex] + 56x³y³[tex]z^{4}[/tex] + 49[tex]y^{6}[/tex][tex]z^{8}[/tex]

Step-by-step explanation:

Note that we are using the rule of exponents

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]

Given

(4x³ + 7y³[tex]z^{4}[/tex] )² = (4x³ + 7y³[tex]z^{4}[/tex] )(4x³ + 7y³[tex]z^{4}[/tex] )

Each term in the second factor is multiplied by each term in the first factor, that is

4x³ (4x³ + 7y³[tex]z^{4}[/tex] ) + 7y³[tex]z^{4}[/tex] ( 4x³ + 7y³[tex]z^{4}[/tex] ) ← distribute both parenthesis

= 16[tex]x^{6}[/tex] + 28x³y³[tex]z^{4}[/tex] + 28x³y³[tex]z^{4}[/tex] + 49[tex]y^{6}[/tex][tex]z^{8}[/tex] ← collect like terms

= 16[tex]x^{6}[/tex] + 56x³y³[tex]z^{4}[/tex] + 49[tex]y^{6}[/tex][tex]z^{8}[/tex]