Respuesta :
Answer:
A = 60 cm²
Step-by-step explanation:
Finding BC using Pythagorean Theorem:
=> [tex]c^2= a^2+b^2[/tex]
=> [tex]13^2 = a^2+5^2[/tex]
=> 169-25 = [tex]a^2[/tex]
=> [tex]a^2[/tex] = 144
Taking sqrt on both sides
=> BC = 12
So,
BC = CD = 12
=> BD = BC+CD
=> BD = 12+12
=> BD = 24
Now, The area:
=> Area of a Triangle = [tex]\frac{1}{2} (Base)(Height)[/tex]
Where BASE = 24, HEIGHT = 5
=> A = 1/2(5)(24)
=> A = 1/2(120)
=> A = 60 cm²
Step-by-step explanation IN triangle abc,
AC² = AB² + BC² (Phythogoras theorem)
13² = 5² + BC²
169 - 25 = BC²
144 = BC²
BC² = 144
BC = 12 (APPLAYING SQAURE ROOT)
Then in triangle ADC,
AD² = AC² + CD²
AD² = 13² + 12² (CD = BD - BC)
AD² = 169 + 144
AD = 17cm (aprox.)
Therefore area of triangle abd = 1/2× length × side = 1/2× 5 ×24 = 5 × 12 = 60cm