Respuesta :

Answer:

A = 60 cm²

Step-by-step explanation:

Finding BC using Pythagorean Theorem:

=> [tex]c^2= a^2+b^2[/tex]

=> [tex]13^2 = a^2+5^2[/tex]

=> 169-25 = [tex]a^2[/tex]

=> [tex]a^2[/tex] = 144

Taking sqrt on both sides

=> BC = 12

So,

BC = CD = 12

=> BD = BC+CD

=> BD = 12+12

=> BD = 24

Now, The area:

=> Area of a Triangle = [tex]\frac{1}{2} (Base)(Height)[/tex]

Where BASE = 24, HEIGHT = 5

=> A = 1/2(5)(24)

=> A = 1/2(120)

=> A = 60 cm²

Step-by-step explanation IN triangle abc,

AC² = AB² + BC² (Phythogoras theorem)

13² = 5² + BC²

169 - 25 = BC²

144 = BC²

BC² = 144

BC = 12 (APPLAYING SQAURE ROOT)

Then in triangle ADC,

AD² = AC² + CD²

AD² = 13² + 12² (CD = BD - BC)

AD² = 169 + 144

AD = 17cm (aprox.)

Therefore area of triangle abd = 1/2× length × side = 1/2× 5 ×24 = 5 × 12 = 60cm