Respuesta :

Answer:

4x + 6

Step-by-step explanation:

Given

[tex]\frac{x}{x^2+3x+2}[/tex] + [tex]\frac{3}{x+1}[/tex]

Before we can add the fractions we require them to have a common denominator.

Factor the denominator of the first fraction

[tex]\frac{x}{(x+1)(x+2)}[/tex] + [tex]\frac{3}{x+1}[/tex]

Multiply the numerator / denominator of the second fraction by (x + 2)

= [tex]\frac{x}{(x+1)(x+2)}[/tex] + [tex]\frac{3(x+2)}{(x+1)(x+2)}[/tex] ← fractions now have a common denominator

Add the numerators leaving the denominators

= [tex]\frac{x+3(x+2)}{(x+1)(x+2)}[/tex]

= [tex]\frac{x+3x+6}{(x+1)(x+2)}[/tex]

= [tex]\frac{4x+6}{(x+1)(x+2)}[/tex] ← simplified sum with numerator 4x + 6