Respuesta :
Answer:
3. [tex]\overline{PM}\cong \overline{ON}[/tex] Distances between two parallel lines [tex]\overline{MN} \ and\ \overline{PO}[/tex]
4. [tex]\overline{AC}[/tex] = [tex]\overline{CE}[/tex]: Reason; Corresponding part of ΔACB and ΔDCE
C is the midpoint of [tex]\overline{AE}[/tex]: Reason; [tex]\overline{AC}[/tex] = [tex]\overline{CE}[/tex]: Definition of midpoint
Step-by-step explanation:
3. A parallelogram is defined as a quadrilateral with two opposite sides equal and parallel and having equal opposite interior angles
MNOP is a parallelogram: Reason; Given
[tex]\overline{PM}\left | \right |\overline{ON}[/tex] : Reason; Opposite sides of a parallelogram
∠NOM ≅ ∠OMP: Reason Alternate interior angles
[tex]\overline{MN}\left | \right |\overline{PO}[/tex]: Reason; Opposite sides of a parallelogram
∠NMO ≅ ∠MOP: Reason Alternate interior angles
[tex]\overline{PM}\cong \overline{ON}[/tex] Distances between two parallel lines [tex]\overline{MN} \ and\ \overline{PO}[/tex]
4. [tex]\overline{AB}\left | \right |\overline{DE}[/tex] : Reason; Given
∠EAB ≅ ∠AED: Reason; Alternate int. ∠s Thm
∠ABC ≅ ∠EDB : Reason; Alternate int. ∠s Thm
C is the midpoint of [tex]\overline{BD}[/tex]: Reason; Given
[tex]\overline{BC}[/tex] = [tex]\overline{CD}[/tex]: Reason; Definition of midpoint
Therefore, ΔACB ≅ ΔDCE: Reason Angle Angle Side (AAS) Theorem
[tex]\overline{AC}[/tex] = [tex]\overline{CE}[/tex]: Reason; Corresponding part of ΔACB and ΔDCE
C is the midpoint of [tex]\overline{AE}[/tex]: Reason; Definition of midpoint