Respuesta :
[tex]42a^5b^3=7ab^3\cdot6a^4\\\\35a^3b^4=7ab^3\cdot5a^2b\\\\42ab^4=7ab^3\cdot6b\\\\\boxed{GCF(42a^5b^3,\ 35a^3b^4,\ 42ab^4)=7ab^3}[/tex]
Answer:
[tex]7ab^{3}[/tex] is the answer.
Step-by-step explanation:
The given equation is :
[tex]42a^{5}b^{3}[/tex] = [tex]2*3*7*a*a*a*a*a*b*b*b[/tex]
[tex]35a^{3}b^{4}[/tex] = [tex]5*7*a*a*a*b*b*b*b[/tex]
[tex]42ab^{4}[/tex] = [tex]2*3*7*a*b*b*b*b[/tex]
Hence, taking the common factors from each term and combining them to create the Greatest Common Factor. We get [tex]7ab^{3}[/tex]