Respuesta :
p(x) = x^2 - 1
q(x) = 5(x - 1)
(p - q)(x) = (x^2 - 1) - 5(x - 1)
q(x) = 5(x - 1)
(p - q)(x) = (x^2 - 1) - 5(x - 1)
Answer:
Option c is true.
( [tex](p-q)(x)=(x^2-1)-5(x-1)[/tex] ) .
Step-by-step explanation:
We are given:
[tex]p(x) = x^2-1[/tex] and [tex]q(x)=5(x-1)[/tex].
Now we are asked to find the expression of:
[tex](p-q)(x)[/tex]
We know that the expression (p-q)(x) could also be written as:
[tex](p-q)(x)=p(x)-q(x)[/tex]
Hence, [tex](p-q)(x)=(x^2-1)-(5(x-1))\\\\(p-q)(x)=(x^2-1)-5(x-1)[/tex]
Hence option c is true i.e. the expression is:
[tex](p-q)(x)=(x^2-1)-5(x-1)[/tex]