Respuesta :
By definition, the volume of a cylinder is given by:
[tex]V = \pi * r ^ 2 * h [/tex]
Where,
r: cylinder radius
h: cylinder height
On the other hand we have:
The height is 3 times the radius:
[tex]h = 3r [/tex]
Therefore, rewriting the volume as a function of the height we have:
[tex]V = \pi * (\frac{h}{3}) ^ 2 * h [/tex]
[tex]V = ( \frac{1}{9} ) \pi * h ^ 3[/tex]
From here, we clear h.
We have then:
[tex]h ^ 3 = \frac{9V}{ \pi} [/tex]
[tex]h = \sqrt[3]{\frac{9V}{ \pi}} [/tex]
Substituting values we have:
[tex]h = \sqrt[3]{\frac{9(24\pi)}{ \pi}} [/tex]
[tex]h = \sqrt[3]{9*24} [/tex]
[tex]h = \sqrt[3]{216} [/tex]
[tex]h = 6[/tex]
Answer:
the height of the cylinder is:
C. 6 units
[tex]V = \pi * r ^ 2 * h [/tex]
Where,
r: cylinder radius
h: cylinder height
On the other hand we have:
The height is 3 times the radius:
[tex]h = 3r [/tex]
Therefore, rewriting the volume as a function of the height we have:
[tex]V = \pi * (\frac{h}{3}) ^ 2 * h [/tex]
[tex]V = ( \frac{1}{9} ) \pi * h ^ 3[/tex]
From here, we clear h.
We have then:
[tex]h ^ 3 = \frac{9V}{ \pi} [/tex]
[tex]h = \sqrt[3]{\frac{9V}{ \pi}} [/tex]
Substituting values we have:
[tex]h = \sqrt[3]{\frac{9(24\pi)}{ \pi}} [/tex]
[tex]h = \sqrt[3]{9*24} [/tex]
[tex]h = \sqrt[3]{216} [/tex]
[tex]h = 6[/tex]
Answer:
the height of the cylinder is:
C. 6 units
Answer:
C. 6 units
Step-by-step explanation:
Let, the radius of the cylinder = r units.
Then, the height of the cylinder = [tex]3\times r[/tex] = [tex]3r[/tex] units.
Also, the volume of the cylinder is 24π cubic units.
Since, we know,
Volume of a cylinder = [tex]\pi r^{2}h[/tex]
i.e. [tex]24\pi=\pi r^{2}(3r)[/tex]
i.e. [tex]24=3r^{3}[/tex]
i.e. [tex]r^{3}=8[/tex]
i.e. r= ±2
Since, the radius cannot be negative.
So, the radius is 2 units.
Then, the height of the cylinder = [tex]3\times 2[/tex] = 6 units.
Hence, option C is correct.