Respuesta :

an= -301+37(n-1) is the answer

Answer:

The nth for the arithmetic sequence is given by:

[tex]a_n=a+(n-1)d[/tex]          ....[1]

where,

a is the first term

d is the common difference of two consecutive terms.

n is the number of terms.

As per the statement:

[tex]a_{10} = 32[/tex] and [tex]a_{12} =106[/tex]

Using [1] we have;

[tex]a_{10} = a+9d[/tex]

⇒[tex]a+9d = 32[/tex]                    ......[2]

[tex]a_{12} =a+11d[/tex]

⇒[tex]a+11d =106[/tex]                    .......[3]

Subtract equation [2] from [3] we have;

[tex]a+11d-a-9d = 106-32[/tex]

Simplify:

[tex]2d = 74[/tex]

Divide both sides by 2 we get;

d = 37

Substitute the value of d in [2] we have;

a+9(37) = 32

a+333 = 32

Subtract 333 from both sides we have;

a = -301

Then substitute the value a and d in [1] we have;

[tex]a_n=-301+(n-1)(37)[/tex]  

⇒[tex]a_n = -301+37n-37 = -338+37n[/tex]

Therefore, an equation for the nth term of the arithmetic sequence is :

[tex]a_n = -338+37n[/tex]