1.Multiply and simplify if possible.

four square root of eleven•four square root of ten
(1 point)

11four square root of ten
11
10
four square root of one hundred ten

2.What is the simplest form of the expression?

cubed root of twenty four times a to the tenth times b to the sixth
(1 point)

3a3b2cubed root of two a
2a3bcubed root of a
2a3b2cubed root of three a
none of these

Respuesta :

Base on the questions and the said problem, the following are the answers to your question and please if you don't mind, don't post long questions in a post.
#1 four square root of one hundred ten
#2 3a3b2cubed root of two a
I hope you are satisfied with my answer and feel free to ask for more 

Answer:

1. Option D is correct.

2. Option C is correct

Step-by-step explanation:

1.

Given the statement: four square root of eleven•four square root of ten

"four square root of eleven" translated to [tex]\sqrt[4]{11}[/tex]

"Four square root of ten" translated to [tex]\sqrt[4]{10}[/tex]

then; we have

[tex]\sqrt[4]{11} \cdot \sqrt[4]{10} = \sqrt[4]{11 \cdot 10} =\sqrt[4]{110}[/tex]

Therefore, we get the answer four square root of one hundred ten i.,e [tex]\sqrt[4]{110}[/tex]

2.

To find the simplest form of the expression.

Given: cubed root of twenty four times a to the tenth times b to the sixth.

This translate to: [tex]\sqrt[3]{24 \cdot a^{10} \cdot b^6}[/tex]

Simplify: [tex]\sqrt[3]{24 \cdot a^{10} \cdot b^6}[/tex]

We know:  

[tex]\sqrt[n]{a^n} = a[/tex]

[tex](a^n)^m = a^{nm}[/tex]

[tex]a^{n+m} = a^n \cdot a^m[/tex]

then;

[tex]\sqrt[3]{24 \cdot a^{10} \cdot b^6}[/tex]

= [tex]\sqrt[3]{8 \cdot 3 \cdot a^9 \cdot a \cdot (b^2)^3}[/tex]

=[tex]\sqrt[3]{2^3 \cdot 3 \cdot (a^3)^3 \cdot a \cdot (b^2)^3}[/tex]

=[tex]2 \cdot a^3 \cdot b^2\cdot \sqrt[3]{3 \cdot a}[/tex]

or

=[tex]2a^3b^2\sqrt[3]{3a}[/tex]

Therefore, the simplest form of the given expression is, [tex]2a^3b^2\sqrt[3]{3a}[/tex] or [tex]2a^3b^2 \text{cubed root of three times a}[/tex]