Respuesta :
[tex]\frac{6x + 9}{15x^{2}} \div \frac{16x - 12}{10x^{4}}[/tex]
[tex]\frac{3(2x) + 3(3)}{3(5x^{2})} \div \frac{4(4x) - 4(3)}{2(5x^{4})}[/tex]
[tex]\frac{3(2x + 3)}{3(5x^{2})} \div \frac{4(4x - 3)}{2(5x^{4})}[/tex]
[tex]\frac{2x + 3}{5x^{2}} \div \frac{2(4x - 3)}{5x^{4}}[/tex]
[tex]\frac{2x + 3}{5x^{2}} \times \frac{5x^{4}}{2(4x - 3)}[/tex]
[tex]\frac{2x + 3}{1} \times \frac{x^{2}}{2(4x - 3)}[/tex]
[tex]\frac{2x^{3} + 3x^{2}}{8x - 6}[/tex]
[tex]\frac{3(2x) + 3(3)}{3(5x^{2})} \div \frac{4(4x) - 4(3)}{2(5x^{4})}[/tex]
[tex]\frac{3(2x + 3)}{3(5x^{2})} \div \frac{4(4x - 3)}{2(5x^{4})}[/tex]
[tex]\frac{2x + 3}{5x^{2}} \div \frac{2(4x - 3)}{5x^{4}}[/tex]
[tex]\frac{2x + 3}{5x^{2}} \times \frac{5x^{4}}{2(4x - 3)}[/tex]
[tex]\frac{2x + 3}{1} \times \frac{x^{2}}{2(4x - 3)}[/tex]
[tex]\frac{2x^{3} + 3x^{2}}{8x - 6}[/tex]
Answer
Simplify the quantity 6 x plus 9 over 15 x squared all over quantity 16 x minus 12 over 10 x to the fourth power .
To prove
As given
the quantity 6 x plus 9 over 15 x squared all over quantity 16 x minus 12 over 10 x to the fourth power .
Now written this in the simple form
[tex]= \frac{\frac{6x+9}{15x^{2}}{\frac{16x -12}{10x^{4}}[/tex]
Now simplify the above equation
[tex]= \frac{\frac{6x+9\times 10x^{4}}{15x^{2}\times 16x-12}[/tex]
Now using the property
[tex]\frac{y^{a}}{y^{b}} = y^{a-b}[/tex]
Thus
[tex]= \frac{\frac{6x+9\times 10x^{4 -2}}{15\times 16x-12}[/tex]
[tex]= \frac{\frac{6x+9\times 10x^{2}}{15\times 16x-12}[/tex]
Now again simplify the above equation
[tex]= \frac{3(2x+3)\times 10x^{2}}{15\times 4(4x-3)}[/tex]
Thus
[tex]= \frac{(2x+3)\times x^{2}}{2\times (4x-3)}[/tex]
Therefore
[tex]= \frac{2x^{3}+3x^{2}} {8x-6}[/tex]