Respuesta :
Hello,
If i have well understood:
[tex]F(x)= \int\limits^{b(x)}_{a(x)} {f(x,t)} \, dt \\
\boxed{ F'(x)=f(x,b(x))*b'(x)-f(x,a(x))*a'(x)+ \int\limits^{b(x)}_{a(x)} { \frac{\delta f(x,t)}{\delta x}} \, dt}\\\\ F(x)= \int\limits^{cos(x)}_{0} { \dfrac{1}{1+t^2} } \, dt \\ F'(x)= \dfrac{1}{1+cos^2(x)}*(-sin(x))- \frac{1}{1}*0+ \int\limits^{cos(x)}_{0} { \dfrac{\delta \dfrac{1}{1+t^2}}{\delta x} \, dt \\ =-\ \dfrac{sin(x)}{1+cos^2(x)} [/tex]
If i have well understood:
[tex]F(x)= \int\limits^{b(x)}_{a(x)} {f(x,t)} \, dt \\
\boxed{ F'(x)=f(x,b(x))*b'(x)-f(x,a(x))*a'(x)+ \int\limits^{b(x)}_{a(x)} { \frac{\delta f(x,t)}{\delta x}} \, dt}\\\\ F(x)= \int\limits^{cos(x)}_{0} { \dfrac{1}{1+t^2} } \, dt \\ F'(x)= \dfrac{1}{1+cos^2(x)}*(-sin(x))- \frac{1}{1}*0+ \int\limits^{cos(x)}_{0} { \dfrac{\delta \dfrac{1}{1+t^2}}{\delta x} \, dt \\ =-\ \dfrac{sin(x)}{1+cos^2(x)} [/tex]
Answer:
[tex]\displaystyle y' = \frac{-\sin x}{1 + \cos^2 x}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 2]: [tex]\displaystyle \frac{d}{dx}[\int\limits^x_a {f(t)} \, dt] = f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \int\limits^{\cos x}_0 {\frac{1}{1 + t^2}} \, dt[/tex]
Step 2: Differentiate
- Chain Rule: [tex]\displaystyle y' = \frac{d}{dx} \bigg[ \int\limits^{\cos x}_0 {\frac{1}{1 + t^2}} \, dt \bigg] \cdot \frac{d}{dx}[\cos x][/tex]
- Fundamental Theorem of Calculus 2: [tex]\displaystyle y' = \frac{1}{1 + \cos^2 x} \cdot \frac{d}{dx}[\cos x][/tex]
- Trigonometric Differentiation: [tex]\displaystyle y' = \frac{1}{1 + \cos^2 x} \cdot -\sin x[/tex]
- Simplify: [tex]\displaystyle y' = \frac{-\sin x}{1 + \cos^2 x}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration