Respuesta :

-11 x² = x + 11
11 x² + x + 11 = 0
We will find the value of the discriminant:
D = b² - 4 a c = 1² - 4 * 11 * 11 * 1 - 484 = - 483
D < 0. There are no real solutions.

Answer:

Given the equation: [tex]-11x^2 = x+11[/tex]

or we can write above equation as:

[tex]-11x^2-x-11=0[/tex] or

[tex]11x^2+x+11 =0[/tex]

The general equation of quadratic formula for [tex]ax^2+bx+c=0[/tex]; where a, b and c are constant;

Use Discriminant formula: [tex]D =b^2-4ac[/tex]

If [tex]D> 0[/tex], then there are 2 roots.

If D = 0, then there is only 1 root.

If D <0, then there are no real roots.

Now, from the given equation [tex]11x^2+x+11 =0[/tex] we have

a =11, b= 1 and c =11

Then, using discriminant formula we have;

[tex]D =b^2-4ac =(1)^2 -4(11)(11) = 1-4\cdot 121 = 1-484= -483[/tex]

⇒D<0 [ No real roots]

Therefore, for the given equation [tex]-11x^2 = x+11[/tex] , there are no real solutions.