The function M(s) = 225 + 0.65s represents the material cost of manufacturing gardening scissors when s scissors are produced. The function L(s) = 54 + 1.15s represents the labor cost for producing s scissors. Which expression correctly represents the manufacturing cost per scissors?

Respuesta :

Answer:

[tex]\frac{279 + 1.8s}{s}[/tex]                                                        

Step-by-step explanation:

The  material cost of manufacturing gardening scissors when s scissors are produced : [tex]M(s) = 225 + 0.65s[/tex]

The labor cost for producing s scissors: [tex]L(s) = 54 + 1.15s[/tex]

So, total cost of producing s scissors =  [tex]M(s)+L(s) [/tex]

                                                              =  [tex]225 + 0.65s+54 + 1.15s[/tex]

                                                              =  [tex]279 + 1.8s[/tex]          

So, total cost for s scissors =  [tex]279 + 1.8s[/tex]    

So, manufacturing cost for 1 scissor=  [tex]\frac{279 + 1.8s}{s}[/tex]                                                        

Hence the manufacturing cost per scissors is  [tex]\frac{279 + 1.8s}{s}[/tex]                                                        

The expression that correctly represents the manufacturing cost per scissors is [tex]\frac{279 + 1.8s}{s}[/tex]

What is the expression about?

Take scissors as : s

Note that the material cost of manufacturing gardening scissors if s scissors are made will be:  

M(s) = 225 + 0.65s

The labor cost for makings scissors:  

L(s) = 54+ 1.15s

So, total cost of making scissors =  

M(s) + L (s)

225 + 0.65s + 54+ 1.15s

279 + 1.8s

Then manufacturing cost for 1 scissor=      [tex]\frac{279 + 1.8s}{s}[/tex]                                                    

Therefore, The expression that correctly represents the manufacturing cost per scissors is [tex]\frac{279 + 1.8s}{s}[/tex]

Learn more about expression from

https://brainly.com/question/723406

#SPJ5