Respuesta :

(x + 7)(x - 4) = x^2 - 4x + 7x - 28 = x^2 + 3x - 28


Answer:

Option C is correct

[tex]x^2+3x-28[/tex]

Step-by-step explanation:

Given the function:

[tex]f(x) = x+7[/tex] and [tex]g(x) = x-4[/tex]

we have to find the [tex]f(x) \cdot g(x)[/tex]

[tex]f(x) \cdot g(x)[/tex]

⇒[tex](x+7) \cdot (x+4)[/tex]

Distribute the first term of the first expression to the second expression and second term of the first expression to the second expression.

⇒[tex]x(x-4)+7(x-4)[/tex]

Using distributive property: [tex]a\cdot(b+c) = a\cdot b+ a\cdot c[/tex]

[tex]x^2-4x+7x-28[/tex]

Combine like terms;

[tex]x^2+3x-28[/tex]

Therefore, [tex]f(x) \cdot g(x)[/tex] we get, [tex]x^2+3x-28[/tex]