Respuesta :
Answer:
Option C is correct
[tex]x^2+3x-28[/tex]
Step-by-step explanation:
Given the function:
[tex]f(x) = x+7[/tex] and [tex]g(x) = x-4[/tex]
we have to find the [tex]f(x) \cdot g(x)[/tex]
[tex]f(x) \cdot g(x)[/tex]
⇒[tex](x+7) \cdot (x+4)[/tex]
Distribute the first term of the first expression to the second expression and second term of the first expression to the second expression.
⇒[tex]x(x-4)+7(x-4)[/tex]
Using distributive property: [tex]a\cdot(b+c) = a\cdot b+ a\cdot c[/tex]
[tex]x^2-4x+7x-28[/tex]
Combine like terms;
[tex]x^2+3x-28[/tex]
Therefore, [tex]f(x) \cdot g(x)[/tex] we get, [tex]x^2+3x-28[/tex]