Respuesta :

[tex](2x^4 + 5x^3 - 8x^2 - x + 10)+(8x^4 - 4x^3 + x^2 - x + 2)\\\\=2x^4 + 5x^3 - 8x^2 - x + 10+8x^4 - 4x^3 + x^2 - x + 2\\\\=(2x^4+8x^4)+(5x^3-4x^3)+(-8x^2+x^2)+(-x-x)+(10+2)\\\\=10x^4+x^3-7x^2-2x+12[/tex]

The sum of given expression is [tex]10x^{4} -x^{3} -7x^{2} -2x+12[/tex].

Given expression is,

[tex](2x^4 + 5x^3 - 8x^2 - x+10)[/tex] and  [tex](8x^4 - 4x^3 + x^2 - x + 2)[/tex].

We have to find the sum of both expression.

Since both the term contains same variable x, so

[tex]2x^4 + 5x^3 - 8x^2 - x+10+8x^4 - 4x^3 + x^2 - x + 2[/tex]

on arranging the terms we get,

[tex]2x^4+8x^4+5x^3-4x^3-8x^2+x^2-x-x+10+2[/tex]

adding like terms, we get

[tex]10x^{4} -x^{3} -7x^{2} -2x+12[/tex] .

Hence the required expression is [tex]10x^{4} -x^{3} -7x^{2} -2x+12[/tex].

For more details on polynomial addition follow the link:

https://brainly.com/question/4420925