Answer:
[tex]y_n(x) =C_n \sin \sqrt{\frac{\rho}{T} } w_nx=C_n \sin \sqrt{\frac{\rho}{T} } \sqrt{\frac{T}{\rho} } \frac{n \pi}{L} x[/tex]
[tex]y_n(x) = C_n \sin \frac{n \pi x}{L}[/tex]
Explanation:
The given differential equation is
[tex]T\frac{d^2y}{dx^2} + \rho w ^2y=0[/tex] and y(0) = 0, y(L) =0
where T and ρ are constants
The given rewrite as
[tex]\frac{d^2y}{dx^2} + \frac{\rho w^2}{T} y=0[/tex]
auxiliary equation is
[tex]m^2+ \frac{\rho w^2}{T} =0\\\\m= \pm\sqrt{\frac{\rho}{T} } wi[/tex]
Solution of this de is
[tex]y(x)=C_1 \cos \sqrt{\frac{\rho}{t} } wx + C_2 \sin \sqrt{\frac{\rho}{T} } wx[/tex]
y(0)=0 ⇒ C₁ = 0
[tex]y(x) = C_2 \sin \sqrt{\frac{\rho}{T} } wx[/tex]
y(L) = 0 ⇒
[tex]C_2 \sin \sqrt{\frac{\rho}{T} } wL=0[/tex]
we need non zero solution
⇒ C₂ ≠ 0 and
[tex]\sin \sqrt{\frac{\rho}{T} } wL=0[/tex]
[tex]\sin \sqrt{\frac{\rho}{T} } wL=0 \rightarrow \sqrt{\frac{\rho}{T} } wL=n \pi[/tex]
[tex]w_n = \sqrt{\frac{T}{\rho} } \frac{n \pi}{L}[/tex]
solution corresponding these [tex]w_n[/tex] values
[tex]y_n(x) =C_n \sin \sqrt{\frac{\rho}{T} } w_nx=C_n \sin \sqrt{\frac{\rho}{T} } \sqrt{\frac{T}{\rho} } \frac{n \pi}{L} x[/tex]
[tex]y_n(x) = C_n \sin \frac{n \pi x}{L}[/tex]