Respuesta :

Answer:

[tex]Area = 140[/tex]

Step-by-step explanation:

Given

R(6, 10)

Q(-9, 5)

S(2, -10)

Required

Area of triangle RQS

The are of RQS is calculated using the following formula;

[tex]Area = \frac{1}{2} [R_x(S_y - Q_y) + Q_x(R_y - S_y) + S_x(Q_y - R_y)][/tex]

Where x and y represent the axis of the given coordinates;

Given that R(6, 10);

[tex]R_x = 6 ; R_y = 10[/tex]

Given that Q(-9, 5);

[tex]Q_x = -9 ; Q_y = 5[/tex]

Given that S(2, -10);

[tex]S_x = 2 ; S_y = -10[/tex]

By Substituting these values in the given formula;

[tex]Area = \frac{1}{2} [R_x(S_y - Q_y) + Q_x(R_y - S_y) + S_x(Q_y - R_y)][/tex]

[tex]Area = \frac{1}{2} [6(-10 -5) + -9(10 - (-10)) + 2(5 - 10)][/tex]

[tex]Area = \frac{1}{2} [6(-15) + -9(10 + 10)) + 2(-5)][/tex]

[tex]Area = \frac{1}{2} [-90 + -9(20)) - 10][/tex]

[tex]Area = \frac{1}{2} [-90 -180 - 10][/tex]

[tex]Area = \frac{1}{2} [-280][/tex]

The expression |-280| means absolute value of -280 and the value is 280

[tex]Area = \frac{1}{2} [-280][/tex]

[tex]Area = \frac{1}{2}* 280[/tex]

[tex]Area = 140[/tex]

Hence, the area of the triangle is 140