Respuesta :
Answer:
[tex]\dfrac{x^{2}}{1210000 } - \dfrac{y^{2}}{5759600} = 1[/tex]
Step-by-step explanation:
A hyperbola is a curve for which the difference of the distances |d₂ - d₁| of any point P from the foci is constant.
The definition leads to the equation
[tex]\dfrac{x^{2}}{a^{2}} - \dfrac{y^{2}}{b^{2}} = 1[/tex]
1. Calculate the value of a²
Assume the neighbours are at the foci A and B.
The explosion is farther from B than from A, so it occurred on the right branch of the hyperbola.
Then AB = 1 mi = 5280 ft
and the distance from the focus to the y-axis is
c = 2640
The vertices are (±a,0).
The speed of sound is 1100 ft/s, so B is 2200 ft further from the explosion.
The distance from A to the vertex V₁ is c - a. Then
AB = 2200 + 2(c - a) = 2200 -2(2640 - 2a) = 2200 +5280- 2a = 5280
2a = 2200
a = 1100
a² = 1 210 000
2. Calculate the value of b²
[tex]\begin{array}{rcl}a^{2} + b^{2} & = & c^{2}\\1100^{2} + b^{2} & = & 2640^{2}\\b^{2} & = & 2640^{2} - 1100^{2}\\& = & 6969600 - 1210000\\& = & \mathbf{5759600}\\\end{array}[/tex]
3. Write the equation for the hyperbola
[tex]\mathbf{\dfrac{x^{2}}{1210000 } - \dfrac{y^{2}}{5759600}} = \mathbf{1}[/tex]
The equation of the hyperbola is [tex]\frac{x^2}{1210000} -\frac{y^2}{5759600^2} = 1[/tex]
How to determine the equation of the hyperbola
The equation of an hyperbola is represented as:
[tex]\frac{x^2}{a^2} -\frac{y^2}{b^2} = 1[/tex]
The given parameters are given as:
AB = 1 mile
a = 1100 feet
Express the distance AB as feet
AB = 5280 ft
So, the distance AB from the foci is:
[tex]c = \frac{AB}2[/tex]
This gives
[tex]c = \frac{5280}2[/tex]
[tex]c = 2640[/tex]
The value of b is calculated as:
[tex]a^2 + b^2 = c^2[/tex]
So, we have:
[tex]1100^2 + b^2 = 2640^2[/tex]
This gives
[tex]b^2 = 2640^2 -1100^2[/tex]
Evaluate
[tex]b^2 = 5759600[/tex]
Recall that:
[tex]\frac{x^2}{a^2} -\frac{y^2}{b^2} = 1[/tex]
So, we have:
[tex]\frac{x^2}{1100^2} -\frac{y^2}{5759600^2} = 1[/tex]
[tex]\frac{x^2}{1210000} -\frac{y^2}{5759600^2} = 1[/tex]
Hence, the equation of the hyperbola is [tex]\frac{x^2}{1210000} -\frac{y^2}{5759600^2} = 1[/tex]
Read more about hyperbola at:
https://brainly.com/question/19395889