Answer:
(See explanation below for further details)
Step-by-step explanation:
Any point in rectangular form can be described in terms of radius and angle of the circle. That is:
[tex]P = (r\cdot \cos \theta, r\cdot \sin \theta)[/tex]
Since circunference is divided into 8 equal parts, the point can be modelled as:
[tex]P = (r\cdot \cos \frac{2\pi\cdot n}{8}, r \cdot \sin \frac{2\pi\cdot n}{8} )[/tex]
The approximate radian and degree values for one circle are:
Radians
[tex]0 (0), \frac{\pi}{4} (0.785), \frac{\pi}{2} (1.571), \frac{3\pi}{4} (2.355), \pi (3.142), \frac{5\pi}{4} (3.925), \frac{3\pi}{2} (4.71), \frac{7\pi}{4} (5.495), 2\pi (6.280)[/tex]
Degrees
[tex]0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}, 315^{\circ}, 360^{\circ}[/tex]