The coordinates of the endpoints of the diameter of a circle are (3,7) and (-5,3). Find the coordinates of the center of the circle

Respuesta :

Answer:

[tex](-1,5)[/tex]

Step-by-step explanation:

The definition of the diameter indicates it passes through the center of the circle to be called diameter. Therefore finding the midpoint of the line that is the diameter we will find the center of the circle.

To find the coordinates of this midpoint we must make an average of the 'x' values of the two given points, and also an average of the two given 'y' values.

the coordines of this midpoint will be [tex](x_{m},y_{m})[/tex] where [tex]x_{m}[/tex] is the average of the 'x' values, and [tex]y_{m}[/tex] is the average of the 'y' values

The points we have are:

[tex](3,7)[/tex]

where I will call the coordinates: [tex]x_{1}=3[/tex] and [tex]y_{1}=7[/tex]

[tex](-5,3)[/tex]

where I will call the coordinates: [tex]x_{2}=-5[/tex] and [tex]y_{2}=3[/tex]

the average of the 'x' values is:

[tex]x_{m}=\frac{x_{1}+x_{2}}{2}[/tex]

substituting the values:

[tex]x_{m}=\frac{3+(-5)}{2}\\ \\x_{m}=\frac{3-5}{2}\\ \\x_{m}=\frac{-2}{2}\\ \\x_{m}=-1[/tex]

the average of the 'y' values is:

[tex]y_{m}=\frac{y_{1}+y_{2}}{2}\\[/tex]

substituting the values:

[tex]y_{m}=\frac{7+3}{2}\\ \\y_{m}=\frac{10}{2}\\ \\y_{m}=5[/tex]

and the center of the circle (the midpoint of the diameter) is at:

[tex](x_{m},y_{m})[/tex]

which is

[tex](-1,5)[/tex]