Respuesta :

D this because 7 minus 1 is 6

Option (D) points (7,2) (1,2) are separated by distance of 6 units.

What is distance between two points?

It is the length of the straight line connecting these points in the coordinate plane. This distance can never be negative, therefore we take the absolute value while finding the distance between two given points. The distance formula is an application of the Pythagorean theorem.

For the given situation,

The distance between the two points must be 6 units.

Let the points be (x1,y1) and (x2,y2)

The distance formula is

[tex]d=\sqrt{(x_2-x_1)^{2} +(y_2-y_1)^{2} }[/tex]

We need to check all the options.

Option A: (x1,y1) = (5,6), (x2,y2) = (4,6)

⇒ [tex]d=\sqrt{(4-5)^{2} +(6-6)^{2} }[/tex]

⇒ [tex]d=\sqrt{(-1)^{2} +(0)^{2} }[/tex]

⇒ [tex]d=\sqrt{1}[/tex]

⇒ [tex]d=1[/tex]

Distance ≠ 6. So option A is incorrect.

Option B: (x1,y1) = (1,3), (x2,y2) = (6,3)

⇒ [tex]d=\sqrt{(6-1)^{2} +(3-3)^{2} }[/tex]

⇒ [tex]d=\sqrt{(5)^{2} +(0)^{2} }[/tex]

⇒ [tex]d=\sqrt{25}[/tex]

⇒ [tex]d=5[/tex]

Distance ≠ 6. So option B is incorrect.

Option C: (x1,y1) = (8,1) , (x2,y2) = (1,1)

⇒ [tex]d=\sqrt{(1-8)^{2} +(1-1)^{2} }[/tex]

⇒ [tex]d=\sqrt{(-7)^{2} +(0)^{2} }[/tex]

⇒ [tex]d=\sqrt{49}[/tex]

⇒ [tex]d=7[/tex]

Distance ≠ 6. So option C is incorrect.

Option D: (x1,y1) = (7,2) , (x2,y2) = (1,2)

⇒ [tex]d=\sqrt{(1-7)^{2} +(2-2)^{2} }[/tex]

⇒ [tex]d=\sqrt{(-6)^{2} +(0)^{2} }[/tex]

⇒ [tex]d=\sqrt{36}[/tex]

⇒ [tex]d=6[/tex]

Distance = 6. So option D is correct.

Hence we can conclude that option (D) points (7,2) (1,2) are separated by distance of 6 units.

Learn more about distance between points here

https://brainly.com/question/14645718

#SPJ3