Answer:
[tex]\cos(\theta_1)=-\dfrac{\sqrt{15}}{4}[/tex]
Step-by-step explanation:
The angle [tex]\theta_1[/tex] is located in Quadrant II.
[tex]\sin(\theta_1)=\dfrac{1}{4}[/tex]
From trigonometry, we know that:
[tex]\sin(\theta)=\dfrac{Opposite}{Hypotenuse}\\$Therefore:\\Opposite=1\\Hypotenuse=4\\Using Pythagorean theorem:\\Hypotenuse^2=Opposite^2+Adjacent^2\\4^2=1^2+Adjacent^2\\Adjacent^2=16-1\\Adjacent^2=15\\Adjacent=\sqrt{15}[/tex]
Now, in Quadrant II,
Therefore, the Adjacent angle to [tex]\theta_1 =-\sqrt{15}[/tex]
Therefore:
[tex]\cos(\theta_1)=\dfrac{Adjacent}{Hypotenuse}=\dfrac{-\sqrt{15}}{4}\\\\\cos(\theta_1)=-\dfrac{\sqrt{15}}{4}[/tex]