Use the given values of n and p to find the minimum usual value μ - 2σ and the maximum usual value μ + 2σ.


n = 2136, p = 3/7


Answers:

1. Minimum: 843.1; maximum: 987.75

2. Minimum: 961.17; maximum: 869.69

3. Minimum: 892.56; maximum: 938.3

4. Minimum: 869.69; maximum: 961.17

Respuesta :

Answer:

[tex] \mu -2\sigma = 915.428 - 2* 22.87=869.69[/tex]

[tex] \mu +2\sigma = 915.428 + 2* 22.87=961.17[/tex]

And the best option would be:

4. Minimum: 869.69; maximum: 961.17

Step-by-step explanation:

We can assume that the variable of interst X is distributed with a binomial distribution and we can use the normal approximation.

For this case the mean would be given by:

[tex] E(X) = np = 2136 *(\frac{3}{7})= 915.428[/tex]

And the standard deviation would be:

[tex] \sigma = \sqrt{2136*(\frac{3}{7}) (1-\frac{3}{7})} =22.87[/tex]

And if we find the limits we got:

[tex] \mu -2\sigma = 915.428 - 2* 22.87=869.69[/tex]

[tex] \mu +2\sigma = 915.428 + 2* 22.87=961.17[/tex]

And the best option would be:

4. Minimum: 869.69; maximum: 961.17