Respuesta :

Answer:

[tex]8+i[/tex]

Step-by-step explanation:

We are given that an expression

[tex]6i^4+6i^3-2i^2+\sqrt{-49}[/tex]

We have to rewrite in the form of a+bi

[tex]6(i^2)^2+6i^3-2i^2+\sqrt{-49}[/tex]

We know that

[tex]i^2=-1[/tex]

[tex]i^3=-i[/tex]

[tex]\sqrt{-1}=i[/tex]

Using the identity

Then, we get

[tex]6-6i-2(-1)+7i[/tex]

[tex](6+2)+(7-6)i[/tex]

[tex]8+i[/tex]

This is required form of a+ib