Answer:
[tex]8+i[/tex]
Step-by-step explanation:
We are given that an expression
[tex]6i^4+6i^3-2i^2+\sqrt{-49}[/tex]
We have to rewrite in the form of a+bi
[tex]6(i^2)^2+6i^3-2i^2+\sqrt{-49}[/tex]
We know that
[tex]i^2=-1[/tex]
[tex]i^3=-i[/tex]
[tex]\sqrt{-1}=i[/tex]
Using the identity
Then, we get
[tex]6-6i-2(-1)+7i[/tex]
[tex](6+2)+(7-6)i[/tex]
[tex]8+i[/tex]
This is required form of a+ib