Respuesta :

Answer:

c. [tex] \dfrac{2}{3} [/tex]

Step-by-step explanation:

Let the common ratio be r.

[tex] a_2 = \dfrac{2}{5} [/tex]

[tex] a_3 = \dfrac{2}{5}r [/tex]

[tex] a_4 = \dfrac{2}{5}r^2 [/tex]

[tex] a_5 = \dfrac{2}{5}r^3 [/tex]

We are told that [tex] a_5 = \dfrac{16}{135} [/tex].

[tex] \dfrac{2}{5}r^3 = \dfrac{16}{135}[/tex]

[tex] \dfrac{5}{2} \times \dfrac{2}{5}r^3 = \dfrac{5}{2} \times \dfrac{16}{135}[/tex]

[tex] r^3 = \dfrac{8}{27} [/tex]

[tex] r = \sqrt[3]{\dfrac{8}{27}} [/tex]

[tex] r = \dfrac{2}{3} [/tex]

Answer: c. [tex] \dfrac{2}{3} [/tex]