Respuesta :

Answer:

[tex]\sin{65\º}\cos{25\º} + \sin{25\º}\cos{65\º} = \sin{65\º + 25\º} = \sin{90\º} = \sin{\frac{\pi}{2}} = 1[/tex]

Step-by-step explanation:

We use trigonometric identities to solve this question:

[tex]\sin{A + B} = \sin{A}\cos{B} + \sin{B}\cos{A}[/tex]

In this problem:

We have the right side of the equality, that is:

[tex]\sin{65\º}\cos{25\º} + \sin{25\º}\cos{65\º} = \sin{A}\cos{B} + \sin{B}\cos{A}[/tex]

Which means that [tex]A = 65\º, B = 25\º[/tex]

Then

[tex]\sin{65\º}\cos{25\º} + \sin{25\º}\cos{65\º} = \sin{65\º + 25\º} = \sin{90\º} = \sin{\frac{\pi}{2}} = 1[/tex]