I AM GIVING OUT BRAINLIEST One of the five quadratics below has a repeated root. (There other four have distinct roots.) What is the repeated root?


-x^2 + 18x + 81

3x^2 - 3x - 168

x^2 - 4x - 4

25x^2 - 30x + 9

x^2 - 14x + 24

Respuesta :

Answer:

3/5

Step-by-step explanation:

First one   18^2 - 4(-1)(81)  > 0    so no repeated root

Second one     (-3)^2  - 4(3) (-168)  >  0    so no repeated root

Third one   (-4) - (4) (1) (-4)  > 0      so no repeated root

Fourth one  (-30)^2  - 4(25) (9)   =  900 - 100(9)  =  0      repeated root

Note  this factors  as  (5x - 3)^2  

(5x - 3)^2  = 0     take both roots

5x - 3  = 0

5x  = 3

x  =  3/5   = repeated root

The quadratic expression [tex]25x^{2} -30x+9[/tex] has repeated root and the repeated root is 3/5

How to know a quadratic has repeated root ?

Let, [tex]ax^{2} +bx+c=0[/tex] is a quadratic.

Then the expression ([tex]b^{2}-4ac[/tex]) is called the discriminant of the quadratic.

If  [tex]b^{2}-4ac[/tex] = 0 then we can say that the quadratic has a repeated real root.

Which quadratic has repeated root ?

The discriminant of [tex]-x^{2} +18x+81[/tex] is,

[tex]b^{2}-4ac[/tex] = [tex]18^{2}-4(-1)(81)[/tex] = 324+324=648 > 0

So, This quadratic has no repeated root.

The discriminant of [tex]3x^{2} -3x-168[/tex] is,

[tex]b^{2}-4ac[/tex] = [tex](-3)^{2}-4(3)(-168)[/tex] = 9+2016 = 2025 > 0

So, This quadratic has no repeated root.

The discriminant of [tex]x^{2} -4x-4[/tex] is,

[tex]b^{2}-4ac[/tex] = [tex](-4)^{2}-4(1)(-4)[/tex] = 16+16 = 32 > 0

So, This quadratic has no repeated root.

The discriminant of [tex]25x^{2} -30x+9[/tex] is,

[tex]b^{2}-4ac[/tex] = [tex](-30)^{2} -4(25)(9)[/tex] = 900-900 = 0

So, This quadratic has repeated root.

The discriminant of [tex]x^{2} -14x+24[/tex] is,

[tex]b^{2}-4ac[/tex] = [tex](-14)^{2}-4(1)(24)[/tex] = 196-96 = 100 > 0

So, This quadratic has no repeated root.

What is the repeated root ?

The equation [tex]25x^{2} -30x+9[/tex] = 0 has repeated root.

Simplifying the equation we get,

[tex]25x^{2} -30x+9[/tex] = 0

⇒ [tex](5x)^{2}-2(5x)(3)+3^{2}[/tex] = 0

⇒ [tex](5x-3)^{2}[/tex] = 0

⇒ 5x-3 = 0

⇒ 5x = 3

⇒ x = 3/5

The repeated root is 3/5.

Learn more about quadratic here :

https://brainly.com/question/16073165

#SPJ2