contestada

Write the equation of the line that passes through (7,-4) and (-1,2) in slope-intercept form.

Respuesta :

Answer:

slope intercept form y = m x +C

                                [tex]y = \frac{4x}{3} -\frac{40}{3}[/tex]

Step-by-step explanation:

step(i):-

Given two points are A  (7,-4) and B(-1,2)

Slope of two lines formula

 [tex]m= \frac{y_{2} -y_{1} }{x_{2} -x_{1} } = \frac{-1-7}{2-(-4)} =\frac{-8}{6} = \frac{4}{3}[/tex]

Step(ii):-

The equation of the straight line passing through the two points

                                      y-y₁ = m(x-x₁)

Let (x₁ , y₁) = (7,-4)

                                    y - (-4) =[tex]\frac{4}{3}[/tex] (x-7)

On cross multiplication , we get

                                    3(y+4) = 4(x-7)

                                    3 y +12 = 4 x -28

subtract '12' on both sides , we get

                                    3 y = 4 x -28 -12

                                     3 y = 4 x - 40

Dividing '3' on both sides, we get

Now slope intercept form y = m x +C

                                      [tex]y = \frac{4x}{3} -\frac{40}{3}[/tex]

Final answer:-

slope intercept form y = m x +C

                                [tex]y = \frac{4x}{3} -\frac{40}{3}[/tex]