Respuesta :
Answer:
28043.3 [tex]m^{3}[/tex]
Step-by-step explanation:
Formula for volume of a hemisphere can be termed as:
[tex]V = \dfrac{2}{3} \pi r^{3}[/tex]
where [tex]r[/tex] is the radius of hemisphere
Please refer to the figure attached for the sample figure of a hemisphere.
We are given here, diameter of hemisphere = 47.5 m
Relation between diameter and radius is given as :
[tex]r = \dfrac{d}{2}[/tex]
where, [tex]r[/tex] is the radius and
[tex]d[/tex] is the diameter.
So, [tex]r = \dfrac{47.5}{2}\ m[/tex]
Volume is:
[tex]V = \dfrac{2}{3} \pi (\dfrac{47.5}{2})^3\\\Rightarrow \dfrac{2}{3} \times 3.14 \times (\dfrac{47.5}{2})^3\\\Rightarrow 28043.3\ m^3[/tex]
Hence, volume of given hemisphere is 28043.3 [tex]m^{3}[/tex].
Answer:
Step-by-step explanation:
What is the volume of a hemisphere with a diameter of 37.6 m, rounded to the of a cubic meter?
\text{Volume of a Sphere:}
Volume of a Sphere:
V=\frac{4}{3}\pi r^3
V=
3
4
πr
3
\text{radius} = \frac{\text{diameter}}{2} = \frac{37.6}{2}=18.8
radius=
2
diameter
=
2
37.6
=18.8
meters
\text{Plug in:}
Plug in:
\frac{4}{3}\pi (18.8)^3
3
4
π(18.8)
3
27833.1369876
27833.1369876
Use calculator
\text{Volume of Hemisphere HALF of Volume of Sphere:}
Volume of Hemisphere HALF of Volume of Sphere:
\frac{27833.1369876}{2}
2
27833.1369876
Divide volume by 2
13916.5684938
13916.5684938
\approx 13916.6\text{ m}^3
≈13916.6 m
3
Round to the nearest tenth