Respuesta :

Answer:

28043.3 [tex]m^{3}[/tex]

Step-by-step explanation:

Formula for volume of a hemisphere can be termed as:

[tex]V = \dfrac{2}{3} \pi r^{3}[/tex]

where [tex]r[/tex] is the radius of hemisphere

Please refer to the figure attached for the sample figure of a hemisphere.

We are given here, diameter of hemisphere = 47.5 m

Relation between diameter and radius is given as :

[tex]r = \dfrac{d}{2}[/tex]

where, [tex]r[/tex] is the radius and

[tex]d[/tex] is the diameter.

So, [tex]r = \dfrac{47.5}{2}\ m[/tex]

Volume is:

[tex]V = \dfrac{2}{3} \pi (\dfrac{47.5}{2})^3\\\Rightarrow \dfrac{2}{3} \times 3.14 \times (\dfrac{47.5}{2})^3\\\Rightarrow 28043.3\ m^3[/tex]

Hence, volume of given hemisphere is 28043.3 [tex]m^{3}[/tex].

Answer:

Step-by-step explanation:

What is the volume of a hemisphere with a diameter of 37.6 m, rounded to the  of a cubic meter?

\text{Volume of a Sphere:}

Volume of a Sphere:

V=\frac{4}{3}\pi r^3

V=

3

4

πr

3

\text{radius} = \frac{\text{diameter}}{2} = \frac{37.6}{2}=18.8

radius=

2

diameter

=

2

37.6

=18.8

meters

\text{Plug in:}

Plug in:

\frac{4}{3}\pi (18.8)^3

3

4

π(18.8)

3

27833.1369876

27833.1369876

Use calculator

\text{Volume of Hemisphere HALF of Volume of Sphere:}

Volume of Hemisphere HALF of Volume of Sphere:

\frac{27833.1369876}{2}

2

27833.1369876

Divide volume by 2

13916.5684938

13916.5684938

\approx 13916.6\text{ m}^3

≈13916.6 m

3

Round to the nearest tenth