Respuesta :

Answer:

13.31 and - 3.31

Step-by-step explanation:

(x + y)^2 = x^2 + y^2 + 2xy ; x + y = 10; x^2 + y^2 = 56

This means ;

10^2 = 56 + xy;

100-56 = XY

44 = xy---------(3)

From x + y = 10

x = 10- y

Substitute that in eqn 3;

We have: 44 = (10-y) y

44 =10y - y^2

Y^2-10y -44 = 0;

From formula method of quadratic equation;

Y =[ - (-10) +_ √ (-10)^2 + 4 × 1 x (-44)] / 2 × 1

y = [ 10 +_√ (100 + 176) ]/ 2]

y = [ 10 +_ √ 276]/ 2

y = [ 10 + √ 276]/ 2 or [ 10 _ √ 276]/ 2

y = 13.31 or - 3.31

Similarly x = 10 - 13.31 or 10 - (-3.31)

x = - 3.31 or 13.31

The required ordered pairs are (5+√3, 5-√3) and  (5-√3, 5+√3).

Given equations are:

[tex]x+y=10[/tex]......(1)

[tex]x^{2} +y^{2} =56[/tex].......(2)

What is an equation?

An equation is a statement that equates to two statements.

On squaring equation (1) we get

[tex]x^{2} +y^{2} +2xy=100[/tex]

From equation(2) [tex]x^{2} +y^{2} =56[/tex]

So, [tex]2xy=44[/tex]

[tex]xy=22[/tex]

[tex]y=\frac{22}{x}[/tex]

Put [tex]y=\frac{22}{x}[/tex] in equation (1)

We get [tex]x+\frac{22}{x} =10[/tex]

[tex]x^{2} -10x+22=0[/tex]

[tex]x=5+\sqrt{3}[/tex]

[tex]x=5-\sqrt{3}[/tex]

If  [tex]x=5+\sqrt{3}[/tex],

[tex]y=10-x[/tex]

[tex]y=5-\sqrt{3}[/tex]

So the ordered pair is [tex](5+\sqrt{3}, 5-\sqrt{3} )[/tex]

If  [tex]x=5-\sqrt{3}[/tex],

[tex]y=10-x[/tex]

[tex]y=5+\sqrt{3}[/tex]

So the ordered pair is [tex](5-\sqrt{3}, 5+\sqrt{3} )[/tex]

Hence, the required ordered pairs are [tex](5+\sqrt{3}, 5-\sqrt{3} )[/tex] and [tex](5-\sqrt{3}, 5+\sqrt{3} )[/tex].

To get more about equations visit:

https://brainly.com/question/14323743