Answer:
See Explanation
Step-by-step explanation:
Let our quadratic polynomial function [tex]f(x)=x^2-7x+6[/tex]
Let our linear binomial in the form (x − a)=x-1
Part 1: We use long division to divide the polynomial by the binomial.
[tex]\left|\begin{array}{c|c}&x-6\\-----&-----\\x-1&x^2-7x+6\\Subtract&-(x^2-x)\\&------\\&-6x+6\\Subtract&-6x+6\\&------\\&0\end{array}\right|[/tex]
Therefore:[tex]\dfrac{x^2-7x+6}{x-1}=x-6[/tex]
Part 2: In our chosen linear monomial x-1, a=1
[tex]f(a)=f(1)\\f(1)=1^2-7(1)+6=1-7+6=0\\f(a)=0[/tex]
Part 3:
To determine whether a linear binomial is a factor of a polynomial function using the remainder theorem